
ABSTRACT 

Orbital ATK uses a system’s engineering approach to develop diagnostic and prognostic health management 
(PHM) capability for solid rocket motors (SRM) that replaces empirical methods with mechanistic physics-
based methods as necessary. Mechanistic methods are required when empirical methods lack the knowledge of a 
material’s response outside of the measured data. Using a multidisciplinary systems engineering focused 
approach to motor diagnostic and prognostic predictions is the only approach that allows for successful 
development of a PHM system that can monitor critical parameters from the motor system and use these to 
determine current and future performance information of each motor and critical component of the motor 
system. This PHM system can then determine the current performance of the motor system as well as its future 
predicted performance and estimate the service life or future time at which the motor system can no longer meet 
customer performance expectations.  This paper outlines the general systems engineering approach, philosophy, 
and payoff of creating a PHM system, and illustrates when and why mechanistic approaches are best. The paper 
concludes with a discussion of the results obtained from the process on a demonstration system.   

1. INTRODUCTION

Today’s environment of shrinking budgets and aging systems has driven the need for more capable 
sustainment capabilities than those used in the past. In the past and currently, SRMs are managed as a 
fleet once they are fielded, not as individual assets. The current aging and surveillance approach uses a 
small number or representative assets taken from the fleet and tested. Empirical data collected from these 
assets are used to predict fleet service life. Since only a small number of samples are used and the 
exposure of the fleet to the environments may be different for different assets, data scatter is large 
resulting in large standard deviations with low confidence, which results in conservative fleet reliability 
estimates. This results in early retirement of the fleet when a predicted reliability of the fleet falls below 
its requirement. This process leads to high cost for replacing the assets with no way to identify low 
reliability assets for removal. In addition, decommissioned assets are being used for missions that can 
accept a higher risk of failure long after the accepted service life has expired. A potentially better 
approach is to implement a capability than can monitor individual assets and in an active health 
management system which can provide insight into each asset.  

For a relevant example, decommissioned assets are being used for missions that can accept a higher risk 
of failure long after the accepted service life has expired.  A potentially better approach is to implement a 
capability than can monitor individual assets and in an active health management system which can 
provide insight into each asset.  
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It is fairly safe to conjecture that within months of the earliest Chinese development of solid rockets that 
they discovered the issue of propellant damage and service life. It usually takes one catastrophic failure of 
a damaged rocket motor for the warrior to develop a strong sense of caution. Farmers and miners were 
quick to appreciate the benefits of dynamite, but also quick to learn the hazards associated with old 
materials. Modern solid rocket technology has continued the healthy respect for the issues of propellant 
aging and motor service life.  

The fundamental challenge of propellant aging and motor service life is to identify bad motors in the 
inventory and remove them before they can be used or cause harm. The current state-of-the-art is to group 
the individual motors into production lots, perform an empirical extrapolation of key motor properties 
associated with a safe motor, and apply that prediction to the full lot of motors. The thinking behind this 
approach is that the risk of leaving a bad apple in service is greater than the cost of replacing some good 
motors along with the bad motors.  

The current aging and surveillance approach uses a small number or representative assets taken from the 
fleet and tested.  Empirical data collected from these assets are used to predict fleet service life. Since 
only a small number of samples are used and variability between assets associated with materials and 
manufacturing processes, as well as, the exposure of the fleet to the environments may be different for 
different assets; data scatter can be large resulting in large standard deviations with low confidence. This 
makes accurate individual motor prediction difficult, resulting in conservative fleet reliability estimates. 

PHM is an enabling requirement for implementing systems with robust condition-based maintenance plus 
(CBM+) capability. PHM systems are required when the system is known to change behavior with time 
and the risk of an inaccurate prediction of future behavior is not acceptable. System behavior changes 
generally occur by one of the following types of conditions; 

1) Cumulative physical damage caused by induced loads

2) Material changes due to chemical aging mechanisms or exposure to environments

3) State or condition changes from material property relaxation or failure such as magnetic decay or
optical phase changes over time or by exposure to environments including radiation exposures 

PHM systems are typically based on either; a) trend extrapolation or b) fundamental knowledge of what 
causes the changes in system behavior. Users who rely on trend extrapolations hope past and current 
system behavior will predict future system behavior. This is often not the case and has led to many 
significant unanticipated system failures. We introduce a systems engineering approach to develop a 
PHM system based on fundamental knowledge of what causes changes in systems behavior. We refer to 
trend extrapolation approaches as empirical, but when the approach is based on knowing the fundamental 
causes of system performance changes, we refer to that as mechanistic PHM. 

Some definitions are required as our use of terms is slightly different than standard convention.  
Our specific usage has grown out of this effort and enables concise communication of the 
concepts and applications. Diagnostics here refers to the ability to address and assess material and 
component current states. Figure 1 illustrates the risk of depending on diagnostics alone. System failures 
are not found until they exist in the system and failures are experienced or system performance is 
impacted. 

 Prognostics refer to the ability to address and predict material or component future states based on 
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will most likely experience the same aging effects. If the assets are not of the same type, their response to 
the environments may be different and this must be taken into account when assessing the conditions of 
the assets.  

Boundary condition history is a key driver in solid rocket motor (SRM) aging. The boundary conditions 
of an asset refer to those external fields to which it has or will be exposed as a function of time t. For 
example, the temperature history for the i-th asset is Ti(t). The strain tensor field applied may be described 
by E(t); the magnetic field by )(tH


, a chemical field such as relative humidity by RH(t), and so forth. 

Note the applied fields are described by tensors, some of rank 0 (scalar fields such as temperature and 
chemical concentrations), some of rank 1 (vector fields such as acceleration or electromagnetic fields), 
and some of rank 2 (elastic fields such as stress and strain). Mathematically, the history operator is the full 
set of relevant boundary condition fields operating on the asset along with their dependence on time. 

Orbital ATK used a systems engineering approach to develop diagnostic and prognostic health 
management (PHM) capability for SRMs that is replacing empirical methods with mechanistic physics-
based methods. Mechanistic methods are required when empirical methods lack the knowledge of a 
material’s response outside of the measured data. 

Using a multidisciplinary systems engineering focused approach to motor diagnostic and prognostic 
predictions is the only approach that allows for successful development of a PHM system. This PHM 
system can determine the current performance of the motor system as well as the future predicted 
performance of each motor and critical component and estimate the service life or future time at which 
the motor system can no longer meet customer performance expectations.  

The data a PHM system obtains is often not the data used to make decisions. We are typically forced to 
interpret these data using some form of data reduction, ranging from simple curve fitting to providing 
constants to a differential equation that describes system behavior. Empiricism (using methods that are 
data-based analysis methods such as fitting a best-fit line through a cluster of data points and 
extrapolating to predict future behavior) works well when characterizing the behavior of materials or 
systems whose structure or behavior does not significantly change under conditions of interest. We are 
often forced to use empirical methods, however, to predict the behavior of materials and systems even 
though we know the state of their material structure changes during their life cycle. If we do not 
understand the most basic cause of the change in state, then we are making blind predictions into the 
future with empirical methods.  

There is great diversity in how engineers define and use empirical versus mechanistic physics-based 
methods; our goal is to be quite precise here. 

An empirical method gathers trends in properties of interest. These trends are obtained from empirical 
data and do not contain knowledge of why the trends are evolving as they are. In other words, the trends 
lack causality (Figure 2a and 2b). Therefore, in an empirical PHM solution, an engineer or scientist 
practitioner gathers data over time, chooses a trend equation that fits the data quite well and that seems a 
reasonable form for how that data is expected to evolve into the future, and then extrapolates that trend 
line into the future. This constitutes the heart of an empirical PHM system. Note that the practitioner 
“chose” the trend line (i.e., the aging model). It was not derived from first principles, and nature is under 
no obligation to follow that trend line. The reason empirical models often suffer from low fidelity is that 
nature very often does depart from the chosen trend lines. 

A mechanistic physics-based model, on the other hand, seeks to identify the actual physical causes of the 
asset’s evolution in time. Using laws that are well-rooted in universal physical laws, it develops models 
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that describe the evolution of the material’s state variables, given a set of applied boundary condition 
histories. If the model is well-rooted in the universal laws, that is, it can trace its pedigree to the universal 
laws, and if the model correctly describes the physics of evolution of the asset, then the mechanistic 
physics-based model is causal. Causality in the models is necessary for the higher fidelity required in 
future PHM systems. Lack of causality has been the bane of past empirical models and is the reason why 
attention is turning to mechanistic physics-based PHM. 

Figure 2(a).  Empirical Performance Analysis Example.  
Representation of data from time T0-T7 and an extrapolation of the data out to time T15. 
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Figure 2(b).  Empirical Performance Analysis Example.  
The same representation with additional data obtained over time T7-T15 showing prediction lines behaviors 

changed with respect to the earlier extrapolation. This may indicate a component tolerance is out of specification, 
whereas, the system response data does not provide indication of such.  

The reason for migrating to physics-based PHM systems is because, if executed correctly, this method 
provides substantially greater accuracy in diagnostic, prognostic, and performance predictions for most 
asset types. The more complicated the asset is, the greater benefit can be gained from a structured 
mechanistic approaches to understanding the behavior of the system.  If the system, cannot capture the 
data necessary for monitoring individual critical systems behavior parameters then physics-based PHM 
systems approaches are needed to accurate understand the system behavior. 

We describe conditions when empiricism is adequate for PHM, when it becomes frail, and offer a 
framework for replacing empiricism with mechanistic methods. The framework consists of developing a 
predictive train of models that ties the mechanistic methods together into a system prediction. For 
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example, when a product leaves the factory, we know its current state, but from that point forward, we 
only know the environmental conditions to which it was exposed during its life cycle. We use physics-
based models to evolve known zero-time state parameters for the product into its current state at any time 
during its life cycle using measured environmental data. These evolution models can also predict future 
states based on assumed environmental conditions. As technology advances, we will use sensors to 
provide actual measured material properties to determine current state and rely on the evolution models to 
predict future states. 

The benefits of using physics-based methods for complex materials or systems are addressed; particularly 
a) being able to solve the inverse problem (e.g., material or process optimization) with equal confidence
as in the forward solution and b) the ability to segregate and quantify error sources. Solving the inverse 
problem provides insights on how the system could be improved. Understanding sources of error and 
their individual effects on PHM allows users to focus on reducing those errors that contribute most to the 
uncertainty in the system’s current and future predicted states. 

We discuss an approach for developing PHM systems capable of reliably predicting a complex system’s 
remaining life. We provide a framework to successfully break system requirements down and allocate 
necessary component requirements down to manageable levels. We also provide a structure that supports 
the decision process associated with PHM system component development that results in a mechanistic 
approach. Development of mechanistic PHM systems allows system owners to maintain system reliability 
and availability by making appropriate repair or replacement decisions with enough lead time to avoid 
system reliability problems.   

This paper outlines the general systems engineering approach, philosophy, and payoff of creating a PHM 
system and illustrates when and why mechanistic approaches are best. The paper concludes with a 
discussion of the results obtained from the process on a demonstration system. 

2. EMPIRICAL VS. MECHANISTIC METHODS

The ability to predict the viability into the future, however, depends on how well the mathematical models 
fit motor performance. This presents a problem when the model is a mathematical representation of 
representative empirical data or the empirical information that is captured does not provide a complete set 
of the changing parameters. The representative data is obtained by a sample of the fielded boundary 
conditions applied to the motor set and/or separate accelerated aging samples of materials or components 
of representative motor constituents. 

The approach provides data similar to the data shown in Figures 2a and 2b. This approach has its 
limitations as indicated by the trending and extrapolation lines within the figures. If the predictions are 
made within the bounds of the captured data (Figure 2a) for time T0-T7, the data error is limited to the 
uncertainty in the measurements and how well the data sets from the representative data match real motor 
performance. Outside of this time, an extrapolation is limited to the behavior of the system matching the 
same behavior as empirical data contained within the time T0-T7 box. All bets are off, and the error in the 
predicted performance compared to the actual performance can be huge. This is illustrated by looking at 
the three components’ trends that indicate the effects of the parameters continuing to change over time T7-
T15 (Figure 2b), two of which are crossing their respective performance limits. This shows a material 
response that is not captured by a simple empirical extrapolation since the effects of continued exposure 
to the boundary conditions ultimately result in a physical change in a material or a state change that is not 
predicted by empirical representations. In other words, the trends lack causality.  

Another important concept is also shown in this example, the systems measured performance data still 
show an acceptable trend, and does not indicate a fault condition is imminent. This is a result of the 
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system’s represented data not correctly capturing the critical information about the performance of its 
components and trending all of this behavior. In this example, two failures exist, but the system data 
displayed indicate a small offset in the predicted behavior. This is a common problem when the 
information captured at the system level is some reduced composition of the component parameters and 
does not accurately indicate change in any given critical parameter. To better understand what the 
component is doing, and hence reduce the uncertainty in the system, a model needs to be developed based 
on physical principles that can be used to determine the state of the material at any point in time given 
specific system-level measurements translated into physical parameters for each components critical 
performance parameters. 

In addition, if one of the components is nearing a cliff where the data drastically shifts over time, this 
behavior is not accurately predicted by empirical representations. If the interaction of the system 
component's behavior is affected over time by the exposure to the boundary conditions differently on the 
different component, then the system'-s response will not be capture by empirical representations of the 
data since what happened before is not representative of what will happen in the future. These effects 
could mean the system’s capability is nearly exhausted or a trend could actually reverse its effects and 
leave engineers scratching their heads. The second effect could lead to early retirement of the system 
when it is not needed, and the first effect would not give system planners time to react to the unpredicted 
performance degradation. What is needed then is a method to understand how each component affects the 
system and also what each component contributes to the functional service life of the system.   

Empirical and Physics-based Health Management Systems 

The following defines the difference between an empirical (or phenomenological) PHM system and a 
physics-based PHM system. There is great diversity in how engineers define and use empirical versus 
physics-based models; our goal is to be quite precise here. 

An empirical model gathers trends in properties of interest. These trends are obtained from empirical data 
and do not contain knowledge of why the trends are evolving as they are. In other words, the trends lack 
causality (Figure 2b). Therefore, in an empirical PHM program, an engineer or scientist practitioner 
gathers data over time, chooses a trend equation that describes the data quite well and seems a reasonable 
form for how that data is expected to evolve into the future, and then extrapolates that trend line into the 
future. This constitutes the heart of an empirical prognostics health management system. Note that the 
practitioner “chose” the trend line (i.e., the aging model). It was not derived from first principles, and 
nature is under no obligation to follow that trend line. The reason empirical models often suffer from low 
fidelity is that nature very often does depart from the chosen trend lines. 

A physics-based model, on the other hand, seeks to identify the actual physical causes of the asset 
evolution in time. Using laws that are well-rooted in the universal laws, it develops models that describe 
the evolution of the material’s state variables, given a set of applied boundary condition histories. Given 
the model is well-rooted in the universal laws, that is, it can trace its pedigree to the universal laws of 
physics, and the model correctly describes the physics of evolution of the asset, then the physics-based 
model is causal. Causality in the models is necessary for the higher fidelity required in future PHM 
systems. Lack of causality has been the bane of past empirical models and is the reason why attention is 
turning to physics-based PHM. 

The reason for migrating to physics-based PHM systems is because, if executed correctly, this method 
provides substantially greater accuracy in diagnostic, prognostic, and performance predictions for most 
asset types. The more complicated the asset is, the greater benefit can be gained from a structured 
mechanistic approaches to understanding the behavior of the system.  If the system, cannot capture the 
data necessary for monitoring individual critical systems behavior parameters then physics-based PHM 
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systems approaches are needed to accurate understand the system behavior. 

A systems engineering approach to this problem can provide the necessary structure to understand 
how each component affects the system. This approach can also reveal the performance indicators at 
the system level necessary to obtain a valid prediction of component behavior over time. So, 
development of a system prediction based upon physics-based models provides the best ability to 
predict system behavior over time.  

3. SYSTEMS ENGINEERING APPROACH

Using a multidisciplinary, systems engineering focused approach to motor diagnostic and prognostic 
predictions is the only approach that allows for successful development of a PHM system that can 
monitor critical parameters from the motor system and use these to determine current and future 
performance information of each critical component of the motor system. This PHM system can then 
determine the current performance of the motor system as well as its future predicted performance and 
estimate the service life or future time at which the motor system can no longer meet customer 
performance expectations.  

The systems engineering approach first captures all of the customers’ functional requirements, 
desirements, and CONOPS for the desired motor system. Using the captured requirements, desirements, 
and CONOPS, a functional architecture is defined including functional subcomponent representations 
necessary to meet the captured criteria and allocate the appropriate requirements to each subcomponent to 
ensure system performance criteria is met. This process is repeated for each component of the system to 
determine each subcomponent and its allocated requirements. The process continues until the last 
subcomponent is defined whose elements are defined by materials or components that are unchanging 
with respect to the system’s exposed environments (Figure 3). Note it is an important part of systems 
engineering development to capture performance-based parameters at the system and component levels 
along with any adjustments to functional requirements required by subcomponent capabilities. 
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Figure 3.  An Asset is Usually Comprised of Various Systems, Which Themselves are Comprised of Still 
Smaller Subsystems 

The asset is usually a component of a larger super-system, which itself is a component of a still larger super-
system, and so forth. 

Once this deconstruction of the system is accomplished and maintained, including allocating each 
requirement and defining all interfaces to each component and subcomponent of the system, an 
understanding can be obtained of what parameters are critical to the performance of each subcomponent 
and its effect on its parent component. This allows for the systems’ critical performance-based parameters 
to be ascertained and a plan to capture the requisite data to be obtained by a PHM system. This process 
places an element of component and measurement realism into allocated system functional and 
performance driven requirements. The verification process is also a necessary and time-consuming 
process that must be done on the components first and then continue the progression up through the full 
system. This process is represented by a systems engineering V diagram (Figure 4) Note it is an important 
part of systems engineering development to capture performance-based parameters at the system and 
component levels along with any adjustments to functional requirements required by subcomponent 
capabilities. 
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The empirical and physics-based material and process models of a PHM system have fundamentally 
different architectures and the systems engineering tools used to create a physics-based PHM system must 
be cognizant of these differences. An empirical prognostication is a one-step process; a physics-based 
prognostication is a two-step process. These differences are most clearly illustrated using a simple 
operator language as follows. 

H = the boundary condition history operator. It consists of the mathematical operations involved in 
imposing boundary condition fields on the asset’s causal state variables. 

P = the set of properties needed by the performance prediction models to assess asset viability. 

Porig = the original set of properties 

Pfuture = the future set of properties at any time past the original time 

Empirical prognostication consists of the following step: 

Step 1:  H(Porig) = Pfuture (1) 

In other words, the history operator (mathematical expressions best fitted to trend data as a function of 
time or of number of uses) transforms the original set of properties into some future set of properties 
following the trends of the history operator. 

Now let us give additional definitions needed for physics-based PHM. 

S = the set of causal state variables relevant to the evolution of this asset 

Sorig = the original values of the causal state variables 

Sfuture = the future values of the causal state variables at any time past the original time 

EA = the ensemble-averaging operator that averages the ensemble over the set of state variables (micro-
states) to obtain the properties of the macro-state. The ensemble-averaging operator usually consists of 
sums and integrals over micro-states. These sums and integrals are usually quite complicated and often 
use simplifying assumptions whose validity can and must be tested with simulations and validated by 
representative sample testing. 

Then physics-based prognostication consists of the following two steps: 

Step 1:  H(Sorig) = Sfuture (2) 

The history operator evolves the original set of causal state variables into some future state whose values 
are determined by the operation of H on Sorig. This step is necessary since it is the causal state variables 
that are the source of system change(s) with time or use. They are where causality lies; causality does not 
lie in the properties, but the properties are what the performance assessment models must have to assess 
asset viability. Hence the next step is: 

Step 2:  EA(Sfuture) = Pfuture (3) 
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In Box 1, the causes of property evolution are found at the molecular or meso-level. If an asset component 
is evolving due to chemical reaction/diffusion processes, chemists will define the causes of evolution. If 
the evolution is due to cumulative exposure to electromagnetic fields or to mechanical fatigue, other 
scientists are needed to define the causes of evolution. For most materials, there is a rich literature 
describing causal processes. The literature is a good starting point, but must usually be adapted and 
augmented for the specific assets of interest. 

In Box 2, carefully designed experiments are conducted, sometimes on idealized as well as real systems, 
to measure the parameters in the evolution model built from the causal information of Box 1. These 
experiments must often span several years, since the evolution of many parameters is very slow. Slow 
evolution is good; otherwise the materials would age out too quickly. 

In Box 3, the evolution model is exercised to predict the evolution in time of the causal state variables 
given an applied set of boundary condition histories (the history operator). We note here that there is 
generally no such thing as a service life for a set of all assets of a particular type. If some assets have seen 
a harsher boundary condition history, they age out sooner than other assets from the same set that have 
not seen the harsher boundary conditions, hence our desire to build PHM systems that monitor individual 
assets insofar as financially advantageous. 

In Box 4, the state variables are converted into the properties needed by the performance assessment 
models via ensemble-averaging models. 

In Box 5, the properties from any point in time are fed into the performance assessment models that 
predict asset performance.  

Lastly, all errors from all data sources and all models are rolled into a final analysis called the error roll-
up, which provides probability of failure (or conversely, reliability) versus time or usage. The PHM 
system may accommodate any desired format for presenting the errors in the predictions and their 
confidence limits.3,4  

5. DEMONSTRATION OF AN INTEGRATED MOTOR LIFE

MANAGEMENT DATA ACQUISITION AND ANALYSIS SYSTEM

The Integrated Motor Life Management (IMLM) Data Acquisition and Analysis System (DAAS) 
successfully demonstrates the capability of capturing relevant data from an individual SRM asset, 
processing this data, and providing a prediction of the asset’s expected performance. IMLM DAAS’ 
functional architecture is designed to monitor an individual motor in the fleet, record data, and process 
this data to provide an assessment of the motor's ability to meet its mission today and into the future.   

IMLM DAAS uses both the traditional empirical and chemistry based aging surveillance (A&S) methods 
and an advanced approach that uses physics-based mechanistic models to chemically evolve the materials 
due to their age and history of environmental exposure capturing the future properties and uncertainties in 
these properties. This evolution provides a prediction of the future state of the materials based upon 
physical models of the evolution of the materials. These materials properties are then converted to 
mechanical properties for prediction of the motor's performance. The empirical and mechanistic 
information is then used to assess the probability of failure of the motor’s components. This assessment 
provides the predicted service life of the motor and of the fleet based upon the predictions of each of the 
motors. This is a defined improvement over the current methods, which provide a prediction of a few 
sampled motors representative of the fleet and provides no capability to assess environmental exposure or 
handling effects related to the motors or fleet.  
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The IMLM DAAS demonstration monitoring system was placed on a SRM (Figure 7) and monitored for 
boundary condition data. This data was then used to make the thrust prediction for the performance of the 
motor under operation. The prediction as compared to the measure thrust, and the represented error is 
shown in Figure 8. The prediction as compared to the motor chamber pressure and the representative error 
is shown in Figure 9. As can be seen, the performance of the predicted data was well within the 
uncertainty of the prediction. The IMLM DAAS demonstration showed that a PHM system could be 
designed, implemented on a motor, and track the motor during both time and space dimensions while 
collecting, storing and analyzing information relevant to predicting the expected performance of the 
individual motor. The demonstration used the capabilities developed in the program and diagnostic 
capabilities that are used in motor design to  illustrated the capabilities of an integrated demonstration 
PHM system  giving confidence to the PHM approach.   

Figure 7 Full-scale Motor Static Test4 
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Figure 8.  Measured vs. Predicted Thrust and Percent Error 

Figure 9.  Measured vs. Predicted Pressure and Percent Error Conclusion 

This paper has described an approach to PHM that uses physics-based models to enhance the performance 
of traditional empirical approaches.  This approach defines a path to better predict system behavior over 
time than is currently available and also provides a firm physics-based foundation to develop improved 
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systems in the future.  This approach is capable of providing great benefit to systems owners by providing 
reliable predictions about system performance to within a defined uncertainty as obtained from the error 
rollup.  This allows a system to be monitored for data that can truly provide system performance 
indicators and allow for early detection of the onset of failure, thereby enabling a more efficient CBM+ 
capability and extending overall the system life.  
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